Volume & surface area of a right circular cone cut by a plane parallel to its symmetrical axis
Mr Harish Chandra Rajpoot
M.M.M. University of Technology, Gorakhpur273010 (UP), India
1. Introduction:
W
Figure 1: A right circular cone of vertical height H & base radius R is being cut by a parallel plane at a distance from the symmetrical axis AO. Thus the original cone is divided into two parts, one is major & other is minor with hyperbolic plane sections
hen a right circular cone is thoroughly cut by a plane parallel to its symmetrical (longitudinal) axis, then we get either a hyperbola or a pair of straight lines. Here we are interested to compute the volume & surface of right circular cone left after cutting by a plane parallel to its symmetrical axis by computing the volume & surface area of removed part of original cone. (See figure 1, showing a right circular cone ABC of vertical height & base radius being cut by a plane ST (dotted line) parallel to its symmetrical axis AO at a distance ). Thus we have three known values as follows
p(((<>{color:#000;}.
We have to derive the mathematical expressions of volume & surface area of cut cone (i.e. major part left over after removing smaller/minor part) in terms of above three known/given values.
2. Derivation of volume of cut cone (Major part):
C
Figure 2: A parametric point lies on the curved surface of minor part of original right circular cone. A perpendicular PN is dropped from the point P to the XYplane within the region of minor part to be removed from original cone
onsider a right circular cone ABC of vertical height & base radius cut by a plane parallel to its symmetrical axis AO at a distance . In order to derive the expression of volume of the cut cone left over after removing smaller/minor part, it is easier to derive the expression of the volume of removed part from original right circular cone. Consider the circular base of cone on the XYplane & symmetrical axis AO is coincident with Zaxis. Now consider any arbitrary point say on curved surface of minor part to be removed from cone (see left image in fig2)
p<>{color:#000;}. Drop a perpendicular PN from point P to the XYplane within region to be removed. Now, in similar right triangles & (see right image in fig2)
Now, consider an infinitely small rectangular area, on the XYplane within the region of minor part to be removed from original right circular cone (see figure3 below) & let it extend vertically upward to a height up to the point P (as shown by dotted line PN in the figure2 above)
Now, the volume of the elementary cylinder of normal height & cross sectional area
By integrating above volume , the total volume of removed part (i.e. minor part) of cone
The minor part to be removed from original cone is symmetrical about XZplane & its base area is symmetrical about xaxis (As shown by figure3) hence using symmetry of solid minor part to be removed from original cone & applying the proper limits, the volume of removed minor part
Substituting the value of , we get
Figure 3: It is the top view of circular base of right cone which is cut by a plane CD (normal to plane of paper). The minor part (to the left of plane CD) of original right circular cone is symmetrical about XZplane.
Hence, the volume of the minor part removed from original right circular cone,
Hence, the volume of cut right circular cone (i.e. major part left over from original cone),
Important deductions: 1. If the cutting plane passes through the symmetrical (longitudinal) axis of the original right circular cone then substituting in the above expressions, we get
The above deduction is obviously true that a plane passing through the symmetrical (longitudinal) axis divides the right circular cone into two equal parts each having a volume half that of the original cone.
2. Substituting in the above expressions, we get
It is obvious that the cutting plane, parallel to the symmetrical axis & tangent to the base circle of a right circular cone doesn’t remove any part of cone.
3. Derivation of area of the curved surface of cut cone (Major part):
In order to derive the expression of area of curved surface of the cut cone (major part) left over after removing smaller/minor part, it is easier to derive the expression of area of curved surface of minor part to be removed from original right circular cone. Consider the circular base of original cone on the XYplane & symmetrical axis AO is coincident with zaxis. Now, consider any arbitrary point say on the curved surface of minor part to be removed from the original right circular cone (As shown in the figure4)
N
Figure 4: A parametric point lies on the curved surface of minor part of original right circular cone. is the slant length of minor part
ow, in similar right triangles & (see fig3)
p<>{color:#000;}.
On differentiating slant length w.r.t. , we get
Now, consider an infinitely small rectangular area, on the curved surface of minor part to be removed from original right circular cone. Hence by integrating the elementary area, the total area of curved surface of minor part to be removed
The curved surface of minor part to be removed from original cone is symmetrical about XZplane & its base area is symmetrical about xaxis (As shown by figure3 above) hence using symmetry of curved surface to be removed from original cone & applying the proper limits, area of curved surface of minor part to be removed
Substituting the value of , we get
Hence, the area of curved surface of the minor part removed from original right circular cone,
Hence, the area of curved surface of cut right circular cone (i.e. major part left over from original cone),
Important deductions: 1. If the cutting plane passes through the symmetrical (longitudinal) axis of the original right circular cone then substituting in the above expressions, we get
The above deduction is obviously true that a plane passing through the symmetrical (longitudinal) axis divides the right circular cone into two equal parts each having area of curved surface half that of the original cone.
2. Substituting in the above expressions, we get
It is obvious that the cutting plane, parallel to the symmetrical axis & tangent to the base circle of a right circular cone doesn’t remove any part of cone.
4. Derivation of area of the hyperbolic section of cut cone (Major part):
The hyperbolic sections of both major & minor parts cut from the right circular cone are identical & equal in dimensions. In order to derive the expression of area of hyperbolic section of the cut cone (major part) or removed/minor part, configure the hyperbolic section on the XYplane symmetrically about the xaxis such that is the vertex of right branch of hyperbola (As shown in the figure5) Length of OA can be easily obtained by rule of similarity of right triangles, as follows
Points C, D, M, N lie on the base of the cut cone (major part). In right (see figure3 above)
L
Figure 5: Hyperbolic section of the cut cone is configured symmetrically about the xaxis. is the vertex of hyperbola
et the standard equation of hyperbola be as follows
p<>{color:#000;}.
Since, , & the point lies on the hyperbola, hence substituting the corresponding values of X, Y & in the equation of hyperbola,
Now, substituting the values of semimajor & semiminor axes in the equation of hyperbola,
Now, consider an elementary rectangular slab of area & then integrating to get the total area of plane hyperbolic section of the cut cone as follows
Hence, the area of hyperbolic section of the cut cone or removed/minor part,
Important deductions: 1. If the cutting plane passes through the symmetrical (longitudinal) axis of the original right circular cone then substituting in the above expressions, we get
The above deduction is obviously true that a plane passing through the symmetrical (longitudinal) axis divides the right circular cone into two equal parts each with an isosceles triangular section instead of hyperbolic section i.e. cutting plane passing through the symmetrical axis of a right circular cone gives a pair of straight lines instead of a conic i.e. hyperbola.
2. Substituting in the above expressions, we get
It is obvious that the cutting plane, parallel to the symmetrical axis & tangent to the base circle of a right circular cone doesn’t remove any part of cone.
5. Derivation of area of plane base of cut cone (Major part):
In order to derive the expression of area of circular base of the cut cone (major part) left over after removing smaller/minor part, it is easier to derive the expression of area of circular base of minor part to be removed from original right circular cone. Configure the circular base of original cone on the XYplane such that the base of minor part to be removed is symmetrical about xaxis (As shown in the figure3 above)
Now, consider an infinitely small rectangular area, on the XYplane within the region of minor part to be removed from original right circular cone. Now, considering symmetry of circular base of minor part about xaxis & applying the proper limits, the area of circular base of removed minor part
Hence, the area of circular base of the minor part removed from original right circular cone,
Hence, the area of circular base of cut right circular cone (i.e. major part left over from original cone),
Important deductions: 1. If the cutting plane passes through the symmetrical (longitudinal) axis of the original right circular cone then substituting in the above expressions, we get
The above deduction is obviously true that a plane passing through the symmetrical (longitudinal) axis divides the right circular cone into two equal parts each having area of base half that of the original cone.
2. Substituting in the above expressions, we get
It is obvious that the cutting plane, parallel to the symmetrical axis & tangent to the base circle of a right circular cone doesn’t remove any part of cone.
Conclusion: When a right circular cone of vertical height & base radius is thoroughly cut by a plane parallel to its symmetrical (longitudinal) axis at a distance , then we get two parts each with either a hyperbolic section or an isosceles triangular section. The volume & surface area of these two parts (usually unequal parts) of cone are computed as tabulated below
table<>.
<>. <>.
p<>{color:#000;}.
Parameter
<>. p<>{color:#000;}.
Minor part (removed from original right circular cone)
<>.
p<>{color:#000;}.
Major part/cut cone (left over)

<>. <>.
p<>{color:#000;}.
Volume
<>.
p<>{color:#000;}.
<>. p<>{color:#000;}.  <>. <>. p<>{color:#000;}.
Area of curved surface
<>.
p<>{color:#000;}.
<>. p<>{color:#000;}.  <>. <>. p<>{color:#000;}.
Area of hyperbolic section
<>.
p<>{color:#000;}.
<>. p<>{color:#000;}.  <>. <>. p<>{color:#000;}.
Area of circular base
<>.
p<>{color:#000;}.
<>. p<>{color:#000;}. 
All the articles above have been derived by the author by using simple geometry, trigonometry & calculus. All above formula are the most generalised expressions which can be used for computing the volume & surface area of minor & major parts usually each with hyperbolic section obtained by cutting a right circular cone with a plane parallel to its symmetrical (longitudinal) axis.
Note: Above articles had been derived & illustrated by Mr H.C. Rajpoot (B Tech, Mechanical Engineering)
M.M.M. University of Technology, Gorakhpur273010 (UP) India Feb, 2015 Email:[email protected]
Author’s Home Page: https://notionpress.com/author/HarishChandraRajpoot
Mr H.C. Rajpoot (B. Tech, Mechanical Engineering from M.M.M. University of Technology, Gorakhpur273010 (UP) India)
The author H.C. Rajpoot has derived all the general formula to compute the volume & surface area of a slice cut from a right circular cone by a plane parallel to its symmetry axis. All the generalized formula can be used for computing the volume, area of curved surface & area of hyperbolic section of slice obtained by cutting a right circular cone with a plane parallel to its symmetrical axis. All the formula are the most generalized expressions which can be used for computing the volume & surface area of minor & major parts usually each with hyperbolic section obtained by cutting a right circular cone with a plane parallel to its symmetrical (longitudinal) axis.